Dissection, Fixation, and Standard Staining of Adult Drosophila Ovaries
Studies of the Drosophila ovary have provided significant insight into the molecular and cellular processes that control cell function, tissue organization, and animal development. To characterize mutants with defects in oogenesis or to observe the distribution of gene products involved in egg production, the ovaries must be carefully extracted and prepared for analysis. This chapter describes the manual dissection of ovaries from adult Drosophila females, followed by standard fixation and staining of the isolated tissue. Specifically, this chapter provides procedures for simple DNA and F-actin staining to assess cell and tissue morphology, as well as immunostaining to localize proteins of interest.
This is a preview of subscription content, log in via an institution to check access.
Access this chapter
Subscribe and save
Springer+ Basic
€32.70 /Month
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
Price includes VAT (France)
eBook EUR 128.39 Price includes VAT (France)
Softcover Book EUR 163.51 Price includes VAT (France)
Hardcover Book EUR 232.09 Price includes VAT (France)
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Ultrastructural Analysis of Drosophila Ovaries by Electron Microscopy
Chapter © 2015
Visualizing Cytoophidia Expression in Drosophila Follicle Cells via Immunohistochemistry
Chapter © 2015
Basic Techniques in Drosophila Ovary Preparation
Chapter © 2015
References
- Hinnant TD, Merkle JA, Ables ET (2020) Coordinating proliferation, polarity, and cell fate in the Drosophila female germline. Front Cell Dev Biol 8:19. https://doi.org/10.3389/fcell.2020.00019ArticleGoogle Scholar
- Mahowald A, Kambysellis M (1980) Oogenesis. In: Ashburner M, Wright T (eds) The genetics and biology of Drosophila, 2nd edn. Academic Press, pp 141–225 Google Scholar
- McLaughlin JM, Bratu DP (2015) Drosophila melanogaster oogenesis: an overview. In: Bratu DP, McNeil GP (eds) Drosophila oogenesis. Springer New York, New York, pp 1–20 Google Scholar
- Merkle JA, Wittes J, Schüpbach T (2020) Signaling between somatic follicle cells and the germline patterns the egg and embryo of Drosophila. In: Current topics in developmental biology. Elsevier, pp 55–86 Google Scholar
- Spradling A (1993) Developmental genetics of oogenesis. In: Bate M, Martinez-Arias A (eds) The development of Drosophila melanogaster. Cold Spring Harbor Press, Cold Spring Harbor, pp 1–70 Google Scholar
- Blatt P, Martin ET, Breznak SM, Rangan P (2020) Post-transcriptional gene regulation regulates germline stem cell to oocyte transition during Drosophila oogenesis. In: Current topics in developmental biology. Elsevier, pp 3–34. https://doi.org/10.1016/bs.ctdb.2019.10.003ChapterGoogle Scholar
- Drummond-Barbosa D (2019) Local and physiological control of germline stem cell lineages in Drosophila melanogaster. Genetics 213:9–26. https://doi.org/10.1534/genetics.119.300234ArticleCASGoogle Scholar
- Eliazer S, Buszczak M (2011) Finding a niche: studies from the Drosophila ovary. Stem Cell Res Ther 2:45. https://doi.org/10.1186/scrt86ArticleGoogle Scholar
- Flora P, McCarthy A, Upadhyay M, Rangan P (2017) Role of chromatin modifications in Drosophila germline stem cell differentiation. In: Arur S (ed) Signaling-mediated control of cell division. Springer International Publishing, pp 1–30 Google Scholar
- Riechmann V (2017) In vivo RNAi in the Drosophila follicular epithelium: analysis of stem cell maintenance, proliferation, and differentiation. In: Zhang B (ed) RNAi and small regulatory RNAs in stem cells. Springer New York, New York, pp 185–206 ChapterGoogle Scholar
- Slaidina M, Gupta S, Banisch TU, Lehmann R (2021) A single-cell atlas reveals unanticipated cell type complexity in Drosophila ovaries. Genome Res 31:1938–1951. https://doi.org/10.1101/gr.274340.120ArticleGoogle Scholar
- Wu X, Tanwar PS, Raftery LA (2008) Drosophila follicle cells: morphogenesis in an eggshell. Semin Cell Dev Biol 19:271–282. https://doi.org/10.1016/j.semcdb.2008.01.004ArticleCASGoogle Scholar
- Ables ET, Hwang GH, Finger DS et al (2016) A genetic mosaic screen reveals ecdysone-responsive genes regulating Drosophila oogenesis. G3 Bethesda 6:2629–2642. https://doi.org/10.1534/g3.116.028951ArticleCASGoogle Scholar
- Czech B, Preall JB, McGinn J, Hannon GJ (2013) A transcriptome-wide RNAi screen in the Drosophila ovary reveals factors of the germline piRNA pathway. Mol Cell 50:749–761. https://doi.org/10.1016/j.molcel.2013.04.007ArticleCASGoogle Scholar
- Gans M, Audit C, Masson M (1975) Isolation and characterization of sex-linked female-sterile mutants in Drosophila melanogaster. Genetics 81:683–704. https://doi.org/10.1093/genetics/81.4.683ArticleCASGoogle Scholar
- Hayashi R, Wainwright SM, Liddell SJ et al (2014) A genetic screen based on in vivo RNA imaging reveals centrosome-independent mechanisms for localizing gurken transcripts in Drosophila. G3 Bethesda 4:749–760. https://doi.org/10.1534/g3.114.010462ArticleCASGoogle Scholar
- Jagut M, Mihaila-Bodart L, Molla-Herman A et al (2013) A mosaic genetic screen for genes involved in the early steps of Drosophila oogenesis. G3 Bethesda. https://doi.org/10.1534/g3.112.004747
- Jambor H, Surendranath V, Kalinka AT et al (2015) Systematic imaging reveals features and changing localization of mRNAs in Drosophila development. eLife 4:e05003. https://doi.org/10.7554/eLife.05003ArticleGoogle Scholar
- Jia D, Soylemez M, Calvin G et al (2015) A large-scale in vivo RNAi screen to identify genes involved in Notch-mediated follicle cell differentiation and cell cycle switches. Sci Rep 5:12328. https://doi.org/10.1038/srep12328ArticleCASGoogle Scholar
- Lee M-C, Skora AD, Spradling AC (2017) Identification of genes mediating Drosophila follicle cell progenitor differentiation by screening for modifiers of GAL4::UAS variegation. G3 Bethesda 7:309–318. https://doi.org/10.1534/g3.116.036038ArticleCASGoogle Scholar
- Sanchez CG, Teixeira FK, Czech B et al (2016) Regulation of ribosome biogenesis and protein synthesis controls germline stem cell differentiation. Cell Stem Cell 18:276–290. https://doi.org/10.1016/j.stem.2015.11.004ArticleCASGoogle Scholar
- Schüpbach T, Wieschaus E (1989) Female sterile mutations on the second chromosome of Drosophila melanogaster. I. Maternal effect mutations. Genetics 121:101–117. https://doi.org/10.1093/genetics/121.1.101ArticleGoogle Scholar
- Schüpbach T, Wieschaus E (1991) Female sterile mutations on the second chromosome of Drosophila melanogaster. II. Mutations blocking oogenesis or altering egg morphology. Genetics 129:1119–1136 ArticleGoogle Scholar
- Tootle TL, Williams D, Hubb A et al (2011) Drosophila eggshell production: identification of new genes and coordination by Pxt. PLoS One 6:e19943. https://doi.org/10.1371/journal.pone.0019943ArticleCASGoogle Scholar
- Wittes J, Schüpbach T (2019) A gene expression screen in Drosophila melanogaster identifies novel JAK/STAT and EGFR targets during oogenesis. G3 Bethesda 9:47–60. https://doi.org/10.1534/g3.118.200786ArticleCASGoogle Scholar
- Abbaszadeh EK, Gavis ER (2016) Fixed and live visualization of RNAs in Drosophila oocytes and embryos. Methods 98:34–41. https://doi.org/10.1016/j.ymeth.2016.01.018ArticleCASGoogle Scholar
- Cetera M, Lewellyn L, Horne-Badovinac S (2016) Cultivation and live imaging of Drosophila ovaries. In: Dahmann C (ed) Drosophila. Springer New York, New York, pp 215–226 ChapterGoogle Scholar
- Dai W, Montell DJ (2016) Live imaging of border cell migration in Drosophila. In: Jin T, Hereld D (eds) Chemotaxis. Springer New York, New York, pp 153–168 ChapterGoogle Scholar
- Haack T, Bergstralh DT, St Johnston D (2013) Damage to the Drosophila follicle cell epithelium produces “false clones” with apparent polarity phenotypes. Biol Open 2:1313–1320. https://doi.org/10.1242/bio.20134671ArticleGoogle Scholar
- Hudson AM, Cooley L (2014) Methods for studying oogenesis. Methods 68:207–217. https://doi.org/10.1016/j.ymeth.2014.01.005ArticleCASGoogle Scholar
- Peters NC, Berg CA (2016) In vitro culturing and live imaging of Drosophila egg chambers: a history and adaptable method. In: Nezis IP (ed) Oogenesis. Springer New York, New York, pp 35–68 ChapterGoogle Scholar
- Shalaby NA, Buszczak M (2017) Live-cell imaging of the adult Drosophila ovary using confocal microscopy. In: Buszczak M (ed) Germline stem cells. Springer New York, New York, pp 85–91 ChapterGoogle Scholar
- Thompson L, Randolph K, Norvell A (2015) Basic techniques in Drosophila ovary preparation. In: Bratu DP, McNeil GP (eds) Drosophila oogenesis. Springer New York, New York, pp 21–28 ChapterGoogle Scholar
- Wong LC, Schedl P (2006) Dissection of Drosophila ovaries. J Vis Exp 52. https://doi.org/10.3791/52-v
- Zimmerman SG, Peters NC, Altaras AE, Berg CA (2013) Optimized RNA ISH, RNA FISH and protein-RNA double labeling (IF/FISH) in Drosophila ovaries. Nat Protoc 8:2158–2179. https://doi.org/10.1038/nprot.2013.136ArticleCASGoogle Scholar
- Hsu H-J, Drummond-Barbosa D (2017) A visual screen for diet-regulated proteins in the Drosophila ovary using GFP protein trap lines. Gene Expr Patterns 23–24:13–21. https://doi.org/10.1016/j.gep.2017.01.001ArticleCASGoogle Scholar
- Buszczak M, Paterno S, Lighthouse D et al (2007) The carnegie protein trap library: a versatile tool for Drosophila developmental studies. Genetics 175:1505–1531. https://doi.org/10.1534/genetics.106.065961ArticleCASGoogle Scholar
- Morin X, Daneman R, Zavortink M, Chia W (2001) A protein trap strategy to detect GFP-tagged proteins expressed from their endogenous loci in Drosophila. Proc Natl Acad Sci 98:15050–15055. https://doi.org/10.1073/pnas.261408198ArticleCASGoogle Scholar
- Quiñones-Coello AT, Petrella LN, Ayers K et al (2007) Exploring strategies for protein trapping in Drosophila. Genetics 175:1089–1104. https://doi.org/10.1534/genetics.106.065995ArticleCASGoogle Scholar
- Rørth P (1998) Gal4 in the Drosophila female germline. Mech Dev 78:113–118. https://doi.org/10.1016/S0925-4773(98)00157-9ArticleGoogle Scholar
- He L, Wang X, Montell DJ (2011) Shining light on Drosophila oogenesis: live imaging of egg development. Curr Opin Genet Dev 21:612–619. https://doi.org/10.1016/j.gde.2011.08.011ArticleCASGoogle Scholar
- Pokrywka NJ (2013) Live imaging of GFP-labeled proteins in Drosophila oocytes. J Vis Exp:50044. https://doi.org/10.3791/50044
Acknowledgments
The author thanks Olivier Devergne, Makayla Gomperts, Julia Wittes, and McKenzie Young for their contributions to this protocol.